Can You Download Knowledge Into Your Brain With Electricity?

11,229 8 Loading

A cognitive neuroscientist and his team at HRL Laboratories in Malibu, California, seem to have achieved the impossible.

According to a press release, the team “measured the brain activity patterns of six commercial and military pilots, and then transmitted these patterns into novice subjects as they learned to pilot an airplane in a realistic flight simulator.”

If you’re picturing people downloading knowledge directly into the brain Matrix-style, sorry to hand you the blue pill — it’s utter nonsense.

Which is a total shame, because the brain-boosting technique used in the study — transcranial direct current stimulation, or tDCS, is nothing short of fantastical.

Hook up some wires with a 9-volt battery, and you have a state-of-art “thinking cap” that activates select regions of the brain of your choosing. By directly tinkering with the brain’s electrical field — no surgery required — tDCS has the potential to treat depression, anxiety, chronic pain, OCD and motor symptoms in Parkinson’s disease.

A handful of small studies — including the HRL Laboratories research — also tantalizingly suggest that it could heighten creativity, enhance spatial learning, boost math skills and language acquisition and even trigger lucid dreams — sometimes weeks after the initial stimulation.

“It seems to give you any kind of benefit you want,” says Dr. Flavio Frohlich, a neurobiologist at the University of North Carolina and expert in tDCS-assisted cognition.

Sound too good to be true? Perhaps. Ask its doubters, and the only thing that tDCS is good at is giving people a nasty electrical burn.

It’s high-tech brain gain riding the hype cycle train. Here’re the facts and the fiction — let’s see how deep the rabbit hole goes.

How Does tDCS Work?

The short answer: no one really knows.

The technique’s brain-boosting effects were discovered serendipitously. At the turn of the last century, Drs. Walter Paulus and Michael Nitsche at the University of Göttingen in Germany popularized the technique while studying motor learning and working memory. They carefully placed two electrodes over motor regions of the brain, using gel to ensure full contact with the scalp. This generates a weak electrical current — about 1 or 2 milliamps, low enough to be powered by a 9-volt battery.

Can-You-Download-Knowledge-Into-Your-Brain-With-Electricity-11To the team’s surprise, participants receiving the stimulation learned faster than those who received only sham stimulation — a placebo zap to trick them into thinking they were getting the treatment. Almost all later studies followed this protocol, including the aforementioned flight simulator study.

So what’s happening to the brain?

The tDCS current itself is too weak to activate neurons; instead it changes the ability of neurons to respond to stimuli, such as learning a new task. There are two types of stimulation: anodal stimulation primes neurons to be more excitable and thus more likely to fire, boosting signal; cathodal stimulation makes it harder for neurons to fire, decreasing noise.

In this way, tDCS can modulate the signal-to-noise ratio in a select brain region and tweak information processing. The word “tweak” here is key. tDCS doesn’t transfer meaningful information — it only improves the ability of subjects to learn.

At the same time, the current jolts plasticity-related molecules into action in neurons, changing their ability to respond to neurotransmitters.

But it goes even deeper than that. In a study published earlier this week, scientists at the Office of Naval Research found that tDCS in mice strips away certain molecular markers on their DNA. This causes neurons to pump out more BDNF (brain-derived neurotrophic factor), a major vitality-boosting protein that promotes synaptic plasticity and the birth of new neurons and nurtures the brain.

These molecular changes could be why tDCS has long-lasting effects that linger for weeks, suggested the authors in their paper.

That said, it’s currently impossible to precisely target neural networks with tDCS in the way that optogenetics can. The current only flows in superficial layers of the cortex, rarely reaching deeper brain regions such as the hippocampus, a central hub for learning and memory.

And what happens to the rest of the brain during stimulation? Your guess is as good as mine.

Boost or Bust

Given the uncertainty in how tDCS works, it’s perhaps not surprising that it doesn’t always work.

Several past meta-analyses cast serious doubt on the tech’s brain-boosting powers. Two such papers, both from the University of Melbourne, found that single-session tDCS had “little-to-no” reliable effect on executive function, language or memory in healthy young volunteers.

There are also disheartening reports that in some cases, zapping the brain impedes cognition.

Last year, Frohlich and colleagues published a report suggesting stimulation lowers IQ scores. His team measured the IQ of 40 healthy volunteers, then zapped them with either sham or real tDCS for 20 minutes over frontal areas of the brain — specifically, the prefrontal cortex involved in flexible thinking and higher reasoning. When retested, people receiving tDCS performed worse than the non-stimulated controls.

Another team found that although tDCS could speed up the learning process — associating Egyptian-like symbols with numbers — it impaired the volunteers from automatically using this new knowledge in subsequent tests. The authors dubbed their finding “the mental cost of cognitive enhancement.”

The Red Pill

Despite potential perils, optimism for the tech remains sky high.

The promise is so great that tDCS was featured in the prestigious academic journal Nature this week, with scientists warning against overzealous DIY use, already commercially available to biohackers for about $150 a pop.

Stimulating is easy, but doing it right is not, said Frohlich. Commercially available units aren’t regulated, and it takes at least some training to be able to correctly place the electrodes without injuring the scalp.

And since we still don’t understand the long-term effects (not to mention potential side-effects) of tDCS, it’s far too early to call the technique totally safe.

“People may well be damaging their brains,” said Frohlich.

For now, the benefits aren’t worth the risk. As the story continues, however, that could change.

Electrodes get smaller all the time, making it increasingly possible to more precisely modulate brain activity. Although at the moment it’s hard to imagine targeting only a handful of neural networks using tDCS, it’s conceivable that next-gen non-invasive brain stimulation could dramatically improve in specificity.

Can-You-Download-Knowledge-Into-Your-Brain-With-Electricity-7More specific brain stimulation means more specific behavior outcomes.

There are already hints of this possibility: transcranial magnetic stimulation (TMS), which uses magnetic fields to modulate brain activity, is already used in brain-to-brain communication, where scientists stimulate a receiver’s brain with EEG waves recorded from an encoder performing simple tasks.

There’s a hell lot of controversy, but preliminary (published) results show that the encoder’s brain waves contain enough information to cause specific motor responses in the receiver, such as moving his hand in a certain way.

Now imagine an expert’s brain waves “teaching” a novice on complicated tasks.

Here, tDCS will prime the novice’s brain to better encode and retrieve new information. This is, in fact, what the press release mentioned earlier hinted at: that expert pilots’ brain waves helped newbies master a flight simulator.

That’s not the case — the tDCS used in that study was run-of-the-mill steady currents, not fancy EEG recordings. But in a few decades? We probably still won’t be able to “download knowledge” or “program learning” directly into our brain.

We’ll just be learning really, really fast.


Images courtesy of Shutterstock.com

Shelly Fan

Shelly Xuelai Fan is a neuroscientist at the University of California, San Francisco, where she studies ways to make old brains young again. In addition to research, she's also an avid science writer with an insatiable obsession with biotech, AI and all things neuro. She spends her spare time kayaking, bike camping and getting lost in the woods.

Discussion — 8 Responses

  • DSM March 6, 2016 on 2:20 pm

    Amazing work, “weighting the dice” to enhance useful memory formation using exemplars. I expect that it can be used for helping children with speech and perhaps even numeracy problems too.

    Some stroke patients could also benefit, but here is a very interesting implication,

    “What if you record detailed patterns from your own brain when you are young, can that data be used in conjunction with stem cell treatment to repair a brain and restore it’s configuration to one that is similar to how it was years before?”

    • Walt Stawicki DSM March 6, 2016 on 6:13 pm

      muscle memory, somatic mapping, and the associated acvtion potentials for movement are not as nebulous nor as idiosyncratic as personal memory, therefore, in short, just like they said in paragraph 3. NO

      “If you’re picturing people downloading knowledge directly into the brain Matrix-style, sorry to hand you the blue pill — IT’S UTTER NONSENSE.”

      • DSM Walt Stawicki March 7, 2016 on 12:58 pm

        You did not understand a word of my text, I am not talking about high level abstractions, I am talking about low level functions such as vocalisation, phoneme generation, numeric sequencing etc. The sort of thing that is linked to specific (locatable) areas of the brain that are damaged or under developed.

        So I’ll pass on your pill, and I suggest that you take less of whatever you are on because your comment was utter ignorance.

  • Dale March 6, 2016 on 2:29 pm

    An abundance of information on use of electro stimulation to enhance and rehabilitate, go to Swingle Clinic in Vancouver and see what Dr. Swingle has been able to achieve. http://www.swingleclinic.com

  • Leon Ka March 9, 2016 on 2:19 pm

    “But in a few decades? We probably still won’t be able to “download knowledge” or “program learning” directly into our brain.”

    Seriously? Com’on! In a few decades we won’t need to “download knowledge” as we will directly upload our brain onto the cloud.

    And I bet than in a decade or two then yes obviously we’ll be able “download knowledge”…

  • shin March 9, 2016 on 3:22 pm

    the problem with synthetic learning, such as through induction, or implants such as chips, or overwriting, is the ability to distinguish between experiential, axiomatic, and learned information. If something is placed into your brain in a certain way, you may take for granted that whatever it allows you to think of, as a fact, is ultimate reality, to the degree of fanaticism. This can be particularly troublesome on myriad fronts.

    To name a few, imagine the programmer screwed up somewhere, on something. Not to poke fun at common core, but imagine some of our basic assumptions are wrong. Not many centuries ago, the world was flat. Then the sun revolved around the earth. Human powered flight was once impossible until someone with ultra light materials started pedaling in a new contraption. What if the chip is hacked, or pranked, or has a file error where 2+2=5? What if the metric to english units are converted poorly, are rounded off, but we are still led to believe it is immutable absolute fact, and then punch those numbers into a guidance system, or a delicate electrical circuit board design?

    What if there’s a good way to fly a plane that always obeys certain procedures, but there’s also ways beyond the procedures, that violate the codes and laws, but are necessary innovations in order to survive flying through a heavy storm?

    Basically, in addition to the risk of brain washing, creation of fanatics, robotic drones, and idiots, this technology can also be an innovation killer. It’s impossible to think outside the box when what you think with IS THE BOX. Speaking of which, for fans of Orbital, The Box: https://www.youtube.com/watch?v=cONv26K0vL8

  • David Murdoch March 12, 2016 on 10:26 am

    Steven Novella does a very cool take down of this. The original paper makes none of these claims and basically says that tdcs makes no difference to the learning of the trainee pilots.

    Nope, none, none, at all.

    Nothing to see here folks (sadly), move on…

    • DSM David Murdoch March 12, 2016 on 1:29 pm

      Your comprehension seems lacking. Read the following carefully.

      “While previous research has demonstrated that tDCS can both help patients more quickly recover from a stroke and boost a healthy person’s creativity, HRL’s study is one of the first to show that tDCS is effective in accelerating practical learning.”

      Therefore your mention of the original paper is irrelevant because this is new work that takes the methods further and recorded new and different results which their claims are based on. They are not based on the earlier paper, even if it did inspire the newer and more successful study. That is how science progresses.